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Abstract

General solutions (both transient and steady state ) for the temperature rise at any point due to stationary/moving
plane heat sources of di�erent shapes (elliptical, circular, rectangular, and square ) and heat intensity distributions

(uniform, parabolic, and normal ) are presented using the Jaeger's classical heat source method (J.C. Jaeger, Moving
sources of heat and the temperature at sliding contacts, Proc. Royal Society of NSW 76 (1942) 203±224). Starting
from an instantaneous point heat source solution, an elliptical moving heat source with di�erent heat intensity

distributions, namely, uniform, parabolic and normal, was used as the basic plane heat source and its solution for
the temperature rise at any point was derived. This analysis was then extended to other plane heat sources, such as
circular, rectangular, and square heat sources to cover a range of manufacturing processes and tribological problems

experienced in engineering practice. In addition, the analysis presented here is valid for both transient and steady
state conditions while most analyses to date are strictly for quasi-steady state conditions. The solutions for the
stationary heat sources are obtained from the moving heat source solution by simply equating the velocity of sliding
to zero. Further, the analysis can be used to determine the temperature distribution not only at the surface but also

with respective to the depth which again is a very important consideration in most manufacturing and tribological
applications since it e�ects the subsurface deformation, metallurgical changes, hardness variation, and residual
stresses. It can also be used to determine the maximum and average temperatures within the area of the heat source.

Thus, the analysis presented here is believed to be comprehensive. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Plane heat source problems (both stationary and

moving) are frequently encountered in numerous man-
ufacturing processes, such as metal cutting (shear
plane heat source and frictional heat source at the

chip-tool interface), grinding, and polishing; spot weld-
ing (conventional and nonconventional) and cutting

(gas-arc, plasma-arc, laser); surface heat treatment

using laser irradiation; and EDM machining of open-
ings of various shapes (relative to the EDM tools) as
well as in many tribological applications, such as
meshing of gears, cams, bearings, asperities in sliding

contact. The relevant thermal analysis for these appli-
cations begins with the solution of a plane heat source
of appropriate shape and heat intensity distribution.

Temperature distribution and the rate of cooling at
and near the surface can a�ect the metallurgical micro-
structure, thermal shrinkage, thermal cracking, hard-

ness distribution, residual stresses, heat a�ected zone
(HAZ), and chemical modi®cations of the material.
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These e�ects are collectively termed as surface integrity

problems. Consequently, thermal aspects of manufac-

turing are critical in the optimization of the process

parameters and quality of the products produced as

well as their performance and reliability in service.

It may be noted that solutions of plane heat source

problems (both stationary and moving) of various

shapes and heat intensity distributions using the partial

di�erential equations (PDE) method directly may not

be simple and straightforward for they encounter

boundaries where the temperatures are unknown and

only the heat ¯uxes are known (either a constant value

or a known function). Thus, to de®ne and express it

mathematically may not be simple. Even if so, it is still

not certain whether it would be possible to determine

the relevant unknown coe�cients in the solutions of

the relevant PDE's of heat conduction. For example,

in solving the stationary, continuous point heat source

problem using the PDE method, the boundary con-
dition at the heat source is not possible to process

mathematically while it is one of the simplest station-
ary heat source problems. Carslaw and Jaeger [2]
termed problems of this type as cases of variable tem-
perature and introduced an ingenious approach named

the heat source method for solving such problems. It
will be shown that this method can be used to solve a
variety of complicated heat transfer problems in manu-

facturing processes and tribology with the boundary
conditions where the heat ¯uxes are known (either a
constant or a known function) but the temperatures

are unknown.
The basis for the heat source method is the solution

for the instantaneous point heat source, i.e.,

y � Qpt

cr�4pat�3=2
eÿR

2=4at �1�

Nomenclature

ao, bo semi-major and semi-minor axes of
an elliptical heat source or half the
side of a rectangular heat source.

When ao � bo radius of a circular
heat source or half the side of a
square heat source

a thermal di�usivity of the medium
(cm2/s)

Apl, Aell, Ac,

Arec, Asq

area of a plane, elliptical �� paobo),
circular �� pr2o), rectangular
�� 4aobo), and square �� 4a2o� heat
sources, respectively (cm2)

c speci®c heat (J/g�8C)
l, L semi-width and width of the heat

source along the direction of motion
lyi half length of a di�erential stripe

with a distance from the center of the
elliptical source yi (cm)

m, n x i=ao (or Xi=ao� and yi=bo, respectively
Qpt amount of heat liberated by the in-

stantaneous point heat source (J)
qpt heat liberation rate of a stationary

point heat source (J/s)
qpl, qell, qc,
qrec, qsq

heat liberation rate of stationary/
moving plane, elliptic, circular, rec-
tangular, and square heat sources, re-

spectively (J/s)
qo heat liberation intensity of a plane

heat source (J/cm2�s)
R distance between the stationary/mov-

ing point heat source and the point
where the temperature rise at time t

is concerned (cm)

Ri distance between the di�erential seg-
mental heat source and the point
where the temperature rise at time t

is concerned (cm)
t the time after the initiation of an in-

stantaneous heat source (s)

t time of observation or the time after
the initiation of a continuous heat
source (s)

x i, yi coordinates of a di�erential segmen-
tal element from the plane heat
source of various shapes

x, y, z coordinates of the point M where the

temperature rise is concerned
Xi, yi coordinates of a di�erential segmen-

tal element from the plane heat

source of various shapes in a moving
coordinate system

X, y, z coordinates of the point M where the

temperature rise is concerned, in a
moving coordinate system

l thermal conductivity of the medium

(J/cm�s�8C)
y temperature rise at any point at any

time t (8C)
yM temperature rise at any point M at

any time t (8C)
r density of the medium (g/cm3)

Km�ui � � � v2t=4a0
do
o3=2 eÿoÿu

2
i =4o where ui � Riv

2a

erf c�p� complementary error function �1ÿ
erf�p� � 1ÿ 2��

p
p
�1
p eÿu

2

du�
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Refer to the Nomenclature for the de®nition of the var-
ious parameters. Using Eq. (1) and integrating it with

respect to the appropriate spatial and time variables,
the solutions for an instantaneous line, plane, ring, cir-
cular disc, cylindrical surface, and spherical surface

heat source as well as for continuous stationary point,
line, plane, ring, and other heat sources can be
obtained. A more appropriate term to describe this

technique would be the method of superposition of tem-
perature ®eld of individual heat sources although for
simplicity it is called the heat source method.

Jaeger [1] and Carslaw and Jaeger [2] presented sol-
utions for uniform moving band and rectangular heat
sources and uniform stationary heat source using the
heat source method. In the following, a brief consider-

ation of some representative cases of plane heat
sources (both stationary and moving) in some manu-
facturing and tribological applications are given. For

details, the readers are referred to the references cited
as well as other critical reviews available in the litera-
ture.

In the manufacturing processes area, the pioneering
works of Trigger and Chao [3] and Chao and Trigger
[4] on the analytical evaluation of the metal cutting

temperature are signi®cant. They calculated the aver-
age tool±chip interface temperature using Jaeger's sol-
utions for a moving band heat source (Eq. (2)), and a
stationary rectangular (modi®ed from Jaeger's solution

for a stationary square) (Eqs. (2) and (3)) heat source
(Eq. (3)): thus

yM � q

lp

��l
ÿl

eÿv�XÿXi �=2aK0

�
v

2a

����������������������������
�Xÿ Xi �2�z2

q �
dx i

yM � q

lp

�l
0

dx i

�m
0

dyi�����������������������������������������������
�xÿ x i �2��yÿ yi �2�z2

q �3�

They solved Eq. (3) analytically resulting in the non-
dimensional temperature rise at any point at the con-

tacting interface, yxy: The average temperature rise
over the area of the chip±tool sliding contact is given
by

yavg � 1

lm

�l
0

�m
0

yxy dx dy

This equation was simpli®ed for orthogonal (two-
dimensional) cutting as: yavg � 4ql

pl �(shape factor).
Loewen and Shaw [5] (also Shaw [6]) extended Chao

and Trigger's work [4] by determining the heat par-
tition ratio for the shear plane heat source between the
chip and the workmaterial as well as that for the fric-

tional heat source between the chip and the cutting
tool taking into account material properties instead of
constant heat partition as used by Trigger and Chao

[3]. They also developed a similar equation for the
stationary rectangular heat source. However, these

equations are valid only for steady state stationary
heat sources of uniform heat intensity distribution,
square or rectangular in shape.

In the ®eld of tribology, Bowden and Thomas [7],
Barber [8], and others (Cameron et al. [9], Gecim and
Winer [10], Kuhlmann-Wildorf [11]) used similar ap-

proximate equations based on Jaeger's solution for a
stationary heat source to estimate the sliding contact
temperatures. Ling [12] (also, Ling and Ng [13], Ling

[14]) based on the Jaeger's solution of a stationary
point heat source under steady state conditions,
qpt=2plR, used the heat source method to develop a sol-
ution for a stationary rectangular heat source whose

intensity varies spatially: thus

y�x, y, z� �
1

2pl

�l
ÿl

�b
ÿb

q1�x, Z�dx dZ
R

where R �
������������������������������������������������
�xÿ x�2 � �yÿ Z�2 � z2

q
: This equation

o�ers the possibility of solving the heat source
problems of various distributions of heat intensities.
Francis [15] using a similar method, derived two

equations for the stationary circular plane heat source
Ð one for a uniform distribution and the other for an
elliptical distribution of heat intensity.

From the late 1930's to the mid-1940's, Rosenthal
[16±19], Blok [20,21], and Jaeger [1] made seminal con-
tributions to the analysis of moving heat source pro-

blems which formed the basis for much of the applied
research that followed. Because of the mathematical
complexity, various moving heat source problems in

manufacturing and tribology were simpli®ed either to
a moving point or a moving line heat source
(Rosenthal [19]), or uniformly distributed moving band
or rectangular heat source (Jaeger [13]). Also, for

mathematical simplicity much of the analysis to date
was limited to quasi-steady state conditions.
Rosenthal ®rst applied the theory of heat ¯ow due

to a moving point and a moving line heat source to
welding [16,17]. Based on the similarity between the
di�erential equation of heat conduction and that in

electro-magnetic waves, Rosenthal [19] considered the
®nal solution to be a product of two separate functions
Ð one, an exponential function eÿvX=2a, which is a
asymmetric function along the X-axis, and the second,

j�X, y, z�, which is a symmetric function and solved it
using the moving coordinate system. The ®nal solution
is an unsymmetric function along the X-axis which is

close to practice. However, for mathematical simpli-
city, Rosenthal considered quasi-stationary state.
Mahla et al. [27] considered the method of instan-

taneous heat sources which is applicable to nonquasi-
steady states to a particular case of welding. Rosenthal
pointed out that while the solutions of Mahla et al.
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does not di�er signi®cantly from that obtained on the

assumption of quasi-steady state, the solutions in most
cases become too unwieldy for a direct practical appli-
cation.

Jaeger [1] in 1942 introduced the heat source method
(also covered brie¯y in Carslaw and Jaeger [2]) for sol-

ving a wide range of moving heat source problems. He
developed solutions for the temperature rise for plane
heat sources of di�erent shapes (band, square, or rec-

tangular) starting from the solution of an instan-
taneous line heat source. For mathematical simplicity
Jaeger considered the heating time, t � 1 in the very

early stages of the derivation thus limiting the analysis
to quasi-steady state conditions. Jaeger not only intro-

duced the exact solutions for uniform moving band
and moving rectangular heat sources but also gave a
series of approximate equations for very high and very

low values of L where L � vl=2a which later on
became known as the Peclet number for calculating
the maximum and the average temperatures over the

area of the heat source. His reasons for choosing the
approximate equations was to illustrate the power of

the analytical techniques to address some simpli®ed en-
gineering problems.
Exact solutions for the moving plane heat sources

problems of various shapes and heat intensity distri-
butions were attempted only recently. Tian and Ken-
nedy [22] using Jaeger's heat source method, developed

a series of quasi-steady state solutions for moving cir-
cular, moving square, and moving elliptical heat

sources of uniform and parabolic distribution of heat
liberation intensity by integrating the solution of a
moving point heat source with respect to appropriate

spatial variables. They used polar coordinates for the
circular heat source and cartesian for the rectangular
heat source. Thus, their equations for the circular,

square, and elliptical heat sources all seem di�erent
though mathematically correct. It also appears that the

emphasis of Tian and Kennedy's work was to develop
approximate solutions that would be close to the exact
solutions. Bos and Moes [23], also using the heat

source method, gave solutions for a moving elliptical
heat source with uniform and semi-ellipsoidal distri-
bution of heat intensity. They also developed a numeri-

cal approach to solve the steady state heat partitioning
problem.

In this paper, using the heat source method, solutions
for stationary/moving plane heat sources of various
shapes (elliptical, circular, rectangular, and square ) and

heat intensity distributions (uniform, parabolic, and
normal ), for both transient and steady state conditions

are presented. An elliptic moving heat source of
various heat intensity distributions is considered as the
basis and its solution is ®rst determined. By consider-

ing the major axis of the elliptical heat source to be
equivalent to the minor axis, the equation for the tem-

perature rise for a circular heat source is obtained.
Similarly, by assuming the width of the heat source to

be constant, solutions for rectangular �ao 6� bo), and
square �ao � bo� heat sources are obtained. Consider-
ing the velocity of the heat source, v � 0, the solutions

for various stationary plane heat sources are obtained.
It may be noted that the model developed can be
applied in principle for any geometrical shape that can

be de®ned mathematically. This analysis can similarly
be extended to other distributions. Thus, the solution
developed here for a single geometry (elliptical) as a

basis can be extended to develop general solutions
which then can be used to solve a wide range of
stationary/moving plane heat source problems by
merely substituting the appropriate integration limits

and appropriate coe�cients. Thus the analysis is con-
sidered to be comprehensive.

2. Solution for a moving point heat source

The commonly used solution of a moving point heat
source [1,2]

y � qpt

4plR
eÿ�R�X�v=2a �4�

is applicable only for quasi-steady state conditions.
Hence, to develop a general solution (for both transi-
ent and quasi-steady state) an alternate approach is

needed. Fig. 1 is a schematic of the moving point heat
source problem. x, y, and z form the absolute coordi-
nate system and X, y, and z the moving coordinate sys-

tem which moves along with the moving point heat
source with the same velocity (along x-axis). It is
required to determine the temperature rise at any point
M�x, y, z� and time t caused by the moving point heat

source of heat intensity qpt (J/s). At time ti, the moving
point heat source had moved a distance vti: Thus, the
distance between the heat source and the point M is

given by
����������������������������������������
�xÿ vti �2 � y2 � z2

p
: The temperature rise,

dyM at point M at time t caused by the heat liberated
in this di�erential in®nitesimally small time interval at

time ti (using the solution for an instantaneous point
heat source Eq. (1)) is given by

dyM � qpt dti
cr�4pat�3=2

exp

�
ÿ �xÿ vti �2�y2 � z2

4at

�
�5�

The total temperature rise caused by the moving point

heat source can be obtained by integrating the above
equation from ti � 0 to t, where xÿ vti � xÿ v�tÿ
t� � xÿ vt� vt: It can be noted that �xÿ vt� is the

coordinate of the point M in the moving coordinate
system in the X-direction at time t. So, it can be substi-
tuted by X. Thus, xÿ vti � X� vt: Set t � tÿ ti, then
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dti � ÿdt; when ti � 0, t � t; when ti � t, t � 0: It

can be shown that

yM � qpt

cr�4pa�3=2
�t
t�0

dt
t3=2

exp

�
ÿ �X� vt�2�y2 � z2

4at

�
or

yM � qpt

cr�4pa�3=2
exp

�
ÿ Xv

2a

��t
t�0

dt
t3=2

exp

�

ÿ X 2 � y2 � z2

4at

�
exp

�
ÿ v2t

4a

�
�6�

To express the integral part of Eq. (6) in a non-dimen-
sional form, it is necessary to substitute an appropriate

non-dimensional term instead of variable t: There are
two possibilities: (1) �X 2 � y2 � z2�=4at � x; and (2)
v2t=4a � o: Here, both x and o are non-dimensional
variables. Jaeger [1] used the ®rst substitution, namely,

�X 2 � y2 � z2�=4at � x and assumed t � 1 to obtain
the solution (Eq. (4)). Since this solution is time inde-
pendent, it can be applied only for quasi-steady state

conditions. All subsequent solutions derived based on
this equation for other applications are also time inde-
pendent and can be used only for quasi-steady state

conditions (e.g. [22] or [23]). The use of the second
substitution, namely, v2t=4a � o, results in an alter-
nate solution (Eq. (7)): thus

yM � qpt � v
16lap3=2

exp

�
ÿ Xv

2a

�
� v2t

4a

0

do
o3=2

exp

�
ÿ oÿ

�
u2

4o

�� �7�

where u � Rv=2a, R � X 2 � y2 � z2, R is the distance
between the moving point heat source and point M
where the temperature rise is of interest in the moving

coordinate system at time t.
The integral part of Eq. (7) is very similar to the

modi®ed Bessel function of the second kind, order

zero,

Ko � 1

2

�1
0

do
o

exp
�
ÿ oÿ

ÿ
u2=4o

��
Eq. (7) is the solution for a moving point heat source
which contains the time variable t in the upper limit of
integration. The integral part of Eq. (7) is a non-
dimensional coe�cient. The longer the heating time t,

the larger the coe�cient, and higher the temperature
rise at any point M. Temperature rise, therefore, is
time dependent. Hence, Eq. (7) can be applied for

transient conditions. This integral part has no analyti-
cal solution but can be solved numerically.
For the quasi-steady state, theoretically the heating

time should be 1 but it can be shown that for all
practical purposes this value can be ®nite and deter-
minable. By investigating the nature of f �o� in Eq. (7)

Fig. 1. Schematic showing a moving point heat source problem.
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for various values of u, it was found that f �o� con-
verges when o40 and o45 [24]. That is, when

o > 5, no matter how large (even 1) the results of in-
tegration are almost the same. Thus, it can be assumed
that quasi-steady state condition has been established

when or5, i.e. the upper limit of integration can be
considered as 5, instead of 1 for quasi-steady state.
This relationship can also be used to estimate the time

required for establishing the quasi-steady state con-
ditions:

tquasi-steady � 5
4a

v2
� 20a

v2

As the function to be integrated also converges when
o40, it is necessary to consider a very small value,
say 0.00001 as the lower limit of integration instead of

zero. This will result in insigni®cant error in the ®nal
result. In this paper, Eq. (7) is used as the basis for the
derivation of the general solution for moving plane

heat sources of various shapes and heat intensity distri-
butions for both transient and quasi-steady state con-
ditions.

3. Heat liberation intensity of heat sources of various

distributions

Fig. 2 is a comparison of the three heat intensity dis-
tributions, namely uniform, parabolic, and normal dis-
tributions. It shows that with the same rate of heat

liberation qpl, J/s, the uniform distribution has the
highest uniformity, and hence the lowest maximum
value of heat intensity q0, J/cm

2�s. The normal distri-

bution has the least uniformity and the highest maxi-
mum value of heat intensity. The parabolic

distribution is in between the uniform and the normal
distributions.

3.1. Uniform distribution

The heat intensity for various heat sources with uni-
form distribution is constant and given by

qo � qpl

Apl

3.2. Parabolic distribution

Fig. 3(a) shows the variation of (2-dimensional) the
heat liberation intensity of an elliptic heat source with

a parabolic heat distribution. The relationship between
the heat liberation intensity qo and the distances xi and
yi from the center is given by

qo � C
ÿ
1ÿ y2i =b

2
o

��
1ÿ x 2

i =l
2
yi

�
The heat liberation rate from the di�erential area

dx i dyi is given by

dqell � qo dx i dyi

After appropriate substitutions and integration, it can
be shown [25] that the heat intensity for an elliptical

heat source with a parabolic distribution is given by

qo � qell

0:5Aell

�1ÿ n2 �
�
1ÿm2=�1ÿ n2 �

�
Similarly, the heat intensity for a circular disc heat
source �ao � bo� with a parabolic distribution is given by

qo � qc

0:5Ac

�1ÿ n2 �
�
1ÿm2=�1ÿ n2 �

�
For a rectangular heat source with a parabolic dis-

tribution (refer to Fig. 3(b)), the relationship between
the heat liberation intensity qo and the distances xi and
yi from the center is given by

qo � C
ÿ
1ÿ y2i =b

2
o

�ÿ
1ÿ x 2

i =a
2
o

�
It can be shown that the heat intensity for a rec-

tangular heat source with a parabolic distribution is
given by

qo � qrec

4=9Arec

�1ÿ n2 ��1ÿm2 �

Similarly, the heat intensity for a square heat source
with a parabolic distribution is given by

Fig. 2. Variation of the three heat intensity distributions,

namely, uniform, normal, and parabolic with x i=ao from ÿ1
to +1.
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qo � qsq

4=9Asq

�1ÿ n2 ��1ÿm2 �

3.3. Normal distribution

Fig. 4(a) shows the variation (2-dimensional) of the

heat liberation intensity of an elliptic heat source with
a normal heat distribution. The relationship between
the heat liberation intensity qo and the distances x i

and yi from the center is given by

qo � C exp
�
ÿ �3yi=bo �2

�
exp

h
ÿ ÿ3x i=lyi

�2i
It can be shown that the heat intensity for an elliptical
heat source with normal distribution is given by

qo � qell

0:1079Aell

expÿ �3n�2 exp

�
ÿ
�
3m=

�������������
1ÿ n2
p �2�

Substituting, ao � bo � ro, the heat intensity for a cir-

cular disc heat source with normal distribution is given
by

Fig. 3. (a) Variation of the heat liberation intensity of an elliptical heat source with a parabolic heat distribution. (b) Variation of

the heat liberation intensity of a rectangular heat source with a parabolic heat distribution.
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qo � qc

0:1079Ac

exp
�
ÿ �3n�2

�
exp

�
ÿ
�
3m=

�������������
1ÿ n2
p �2�

For a rectangular heat source with a normal distri-
bution (refer to Fig. 4(b)), the relationship between the

heat liberation intensity qo and the distances xi and yi
from the center is given by

qo � C exp
�
ÿ �3n�2

�
exp

�
ÿ �3m�2

�
After appropriate substitutions and integration, it

can be shown that the heat liberation intensity, qo (J/
cm2�s) for a rectangular heat source with a normal dis-
tribution is given by

qo � qrec

p=36Arec

exp
�
ÿ �3n�2

�
exp

�
ÿ �3m�2

�
By substituting ao � bo, we get the heat intensity for

a square heat source with a normal distribution as

qo � qsq

p=36Asq

exp
�
ÿ �3n�2

�
exp

�
ÿ �3m�2

�
Based on a comparison of the equations for various

plane heat sources of di�erent heat intensity distri-
butions (Eq. (4)), a general equation for qo can be
expressed as

qo � qpl

E � Apl

� F � G �8�

Fig. 4. (a) Variation of the heat liberation intensity of an elliptic heat source with a normal heat distribution. (b) Variation of the

heat liberation intensity of a rectangular heat source with a normal heat distribution.
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The non-dimensional parameter E (a constant) and
non-dimensional terms F and G for various heat inten-
sity distributions are given in Table 1. For the uniform

distribution E, F, and G are all equal to one.

4. General solution for moving plane heat sources

Consider the case of a moving elliptical heat source

of various distributions of heat liberation intensities
(Fig. 5). The rate of heat liberation of an elliptical heat
source is qell, J/s. By considering the total elliptical

area as a combination of stripes of di�erent lengths of
width dyi, each stripe as a combination of numerous
segments of length dXi, and each of it as a moving

point heat source, the solution of the moving point
heat source, Eq. (7) can be used to calculate the tem-
perature rise at any point M at time t caused by each
of the di�erential segment, dXidyi: The rate of heat lib-

eration of this di�erential segment qpt is given by
qpt � qo � dXi dyi, where qo is the heat intensity of that
segment of the elliptical area of the plane heat source

in J/cm2�s (refer to Figs. 3 and 5).
The area of the elliptical heat source is denoted as

Aell. The rate of heat liberation of this di�erential in-

®nitesimal small segment dXi dyi is given by

qell

E � Aell

� F � G � dXi dyi J=s

The half length of the di�erential stripe for the ellipti-

cal heat source is a function of yi, i.e.

lyi � ao

������������������������
1ÿ �yi=bo �2

q
� ao

�������������
1ÿ n2
p

�a�

The temperature rise, dyM at any point M at time t
caused by each of the di�erential small segments
dXi dyi (using Eq. (7)) is given by

dyM � qell � F � G � dXi dyi � v
E � 16lap3=2Aell

exp

�
ÿ �Xÿ Xi �v

2a

�
�v2t=4a
0

do
o3=2

exp

�
ÿ oÿ u2i

4o

� �b�

where ui � Riv=�2a�; Ri �
�������������������
R 0 2 � z2
p �������������������������������������������������������Xÿ Xi �2 � �yÿ yi �2 � z2

p
; Ri is the distance between

the di�erential segmental heat source dXi dyi and the

point M where the temperature rise is concerned.
Substituting Xi=ao � m, yi=bo � n, and denoting the

third integral of Eq. (6) as

Km�ui � �
�v2t=4a
0

do
o3=2

exp
ÿÿ oÿ u2i =4o

�
the temperature rise at any point M at time t caused
by the total elliptical moving heat source is given by

Table 1

Coe�cients E, F, G, and area Apl for the general solution for various heat intensity distributions and various shapes of the heat

sources

Shape of heat source Distribution of intensity E F G Apl

Uniform 1 1 1 paobo

Elliptical (or circular disc) Parabolic 0.5 (1ÿ n2) �1ÿ m2

1ÿn2 � (or pr2o)

Normal 0.1079 exp�ÿ�3n�2� exp�ÿ� 3m��������
1ÿn2
p �2�

Uniform 1 1 1 4aobo
Rectangular (or square) Parabolic 4/9 (1ÿ n2) (1ÿm2) (or 4a2o)

Normal p=36 exp�ÿ�3n�2� exp�ÿ�3m�2�

Fig. 5. Schematic showing the moving elliptic heat source

problem.
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yM � qellv

E � 16lap3=2Aell

��bo
yi�ÿbo

F � dyi
��ao ��������1ÿn2

p

x i�ÿao
��������
1ÿn2
p dXi � G�

exp

�
ÿ �Xÿ Xi �v

2a

�
Km�ui � �9�

Eq. (9) is the general solution of a moving elliptical
heat source of various distributions of heat intensity. A
circular disc heat source can be considered as a special

case of an elliptic heat source where ao � bo � ro,
where ro is the radius of the circular disc. For a rec-
tangular heat source, the lengths of the di�erential

stripes are constant and equal to ao (refer to Fig. 3(b)).
A square heat source can be considered as a special
case of a rectangular heat source, where ao � bo: It can
be shown that for a moving plane heat source of var-
ious shapes, their solutions for various heat intensity
distributions have the same form but di�er only in the
relevant limits of integration for di�erent shapes. So,

the general solution for moving plane heat sources of
various shapes and various heat intensity distributions
can be expressed as

yM � qplv

E � 16lap3=2Apl

��j
yi�ÿj

F � dyi
��k
x i�ÿk

dXi � G

� exp

�
ÿ �Xÿ Xi �v

2a

�
Km�ui � �10�

The relevant integration limits j and k for various

shapes are given in Table 2.

5. The general solution for stationary plane heat sources

The stationary heat source problem can be con-
sidered as a special case of appropriate moving heat
source problem when the velocity of the moving heat

source v is zero (refer to Fig. 1). Consequently, vti � 0,
vt � 0, thus X � x and it is no longer necessary to con-
sider the moving coordinate system. At any time ti the

distance between the heat source and the point M
(where the temperature rise is constant) is given by��������������������������
x 2 � y2 � z2

p
: The amount of heat liberated in the

subsequent time interval dti is qptdti: This amount of
heat generated can be considered as if it is liberated in-

stantaneously, for dti is in®nitesimally small. Thus the
temperature rise at any point M near by the heat
source caused by this amount of heat from the point

heat source can be calculated using the solution of an
instantaneous point heat source as follows:

dyM � qpt dti
cr�4pat�3=2

exp

�
ÿ x 2 � y2 � z2

4at

�
The total temperature rise at point M caused by the
stationary point heat source from ti � 0 to ti � t is
then given by

yM � qpt

cr�4pa�3=2
�ti�t
ti�0

dti
t3=2

exp

�
ÿ x 2 � y2 � z2

4at

�
For ti � tÿ t, dti � ÿdt, and when ti � 0, t � t; when

ti � t, t � 0: thus

yM � qpt

cr�4pa�3=2
�t�t
t�0

dt
t3=2

exp

�
ÿ x 2 � y2 � z2

4at

�
�11�

Eq. (11) is the solution of a continuous stationary

point heat source. Referring to the solution of a mov-
ing point heat source (Eq. (6)), it can be seen that
when v � 0, the terms exp�ÿXv=2a� and exp�ÿv2t=4a�
are each equal to one, and Eq. (6) becomes identically
the same as Eq. (11). So, Eq. (11) is a special case of
Eq. (6) when v � 0: The integral part of Eq. (11) can-

not be solved analytically but can be calculated by nu-
merical integration. Usually, it would be preferable to
express it in non-dimensional form so that it can be
used conveniently for various conditions. The integral

part of Eq. (11) can be transformed into a non-dimen-
sional form by the following substitutions. Let

R�������
4at
p � u where R �

��������������������������
x 2 � y2 � z2

p
then

du

dt
� ÿ1

2
R � �4at�ÿ3=2

4a � ÿ2aR�4at�ÿ3=2, dt � ÿ�4at�
3=2

2aR
du;

dt
t3=2
� ÿ�4a�

3=2

2aR
du � ÿ4

���
a
p
R

du

when t � 0, u � 1; when t � t; u � R�������
4at
p .

Then, Eq. (11) can be written as

Table 2

Integration limits j and k, heat liberation rates qpl, and areas

for various shapes Apl in the general solution

Shape Elliptical Circular Rectangular Square

j bo ro bo ao

k ao

������������������������
1ÿ �yi=bo�2

q ���������������
r2o ÿ y2i

p
ao ao

qpl (J/s) qell qc qrec qsq
Apl (cm

2) paobo pr2 4aobo 4a2o
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y � qpt

cr�4pa�3=2
4
���
a
p
R

�u�1
u�R= �����4at

p eÿu
2

du

� qpt

2acrRp3=2

�u�1
u�R= �����4at

p eÿu
2

du �12�

For 2��
p
p
� p

0 eÿu
2

du, de®ned as an error function,

erf�p� � 2��
p
p
� p

0 eÿu
2

du (see Ref. [26]).

It can be shown [27] that when p � 1, erf�p� � 1:
Similarly, it can be shown [27] that�u�1
0

eÿu
2

du �
���
p
p
2

, and

�u�R= �����4at
p

0

eÿu
2

du �
���
p
p
2

erf
ÿ
R=

�������
4at
p �

Since acr � l, Eq. (12) can be written as follows,
which is the solution for a stationary point heat
source:

y � qpt

4plR

�
1ÿ erf

�
R�������
4at
p

��
or

y � qpt

4plR
� erf c

�
R�������
4at
p

� �13�

The general solutions for stationary plane heat sources
of various shapes and heat intensity distributions can

be derived starting from Eq. (13) using a method simi-
lar to the one described for the moving plane heat
sources.
Substituting qo dx i dyi (or

qpl �F�G
E�Apl

dx i dyi� for qpt in

Eq. (13), the temperature rise at any point M at any
time t caused by the di�erential segment dxi dyi (see
Fig. 5) is given by

dyM � qpl � F � G � dx i dyi
E � Apl � 4plRi

erf c
ÿ
Ri=

�������
4at
p �

:

Thus, the general solution for a stationary plane heat
source of various shapes and heat intensity distri-

butions is given by

yM � qpl

E � 4plApl

� yi��j

yi�ÿj

F � dyi
�x i��k

x i�ÿk
G

1

Ri
erf c

�
Ri�������
4at
p

�
dx i �14�

where values of E, F, G, j, and k can be obtained from

Tables 1 and 2.
It should be noted that Eqs. (10) and (14) are for

the case of an in®nite conduction medium. In most

practical cases when the conduction medium is a semi-
in®nite body and the heat source is moving or remain-
ing stationary on its boundary surface, the results of

calculation using Eqs (10) and (14) should be doubled
for a semi-in®nite body. Thus, the general solution for

a moving plane heat source in a semi-in®nite body is
given by

yM � qplv

E � 8lap3=2Apl

��j
yi�ÿj

F � dyi
��k
x i�ÿk

dXi � G

� exp

�
ÿ �Xÿ Xi �v

2a

�
Km�ui � �15�

The general solution of a stationary plane heat source
in a semi-in®nite body is given by

yM � qpl

E � 2plApl

� yi��j

yi�ÿj
F

� dyi
�x i��k

x i�ÿk
G

1

Ri
erf c

�
Ri�������
4at
p

�
dx i �16�

6. Results and discussion

6.1. Surface temperature rise distribution, ¯ash

temperatures, and ¯ash durations due to a moving plane
heat source

There are di�erent critical temperatures and corre-
sponding ¯ash durations that should be considered in

the optimization of various advanced manufacturing
processing technologies, such as the critical tempera-
tures for certain in situ chemical reactions to take

place as in chemo-mechanical polishing of advanced
ceramics, or for the di�usion of certain species for
improving corrosion resistance, or for certain phase
transformation to take place for improving the hard-

ness or toughness, etc. The ¯ash temperatures and rel-
evant ¯ash durations can be predicted using the
surface temperature rise distribution plots which in

turn are calculated using the general solution for mov-
ing plane heat sources in a semi-in®nite medium, Eq.
(15).

Fig. 6(a)±(f) show the variation of the non-dimen-
sional temperature rise T�� yMla=qplv� distributions on
the surface of a semi-in®nite conduction body along
the direction of motion, X, and through the center of

the heat source �y � 0� for an elliptic heat source of
various heat intensity distributions and di�erent Peclet
numbers, NPe�NPe � vao=2a, where v is the moving vel-

ocity of the heat source, m/s, ao is the semi-length of
the heat source along the direction of motion, cm, and
a is the thermal di�usivity, cm2/s]. Similar distributions

can be obtained for heat sources of di�erent shapes,
such as circular, rectangular, and square. Peclet num-
ber, NPe is a convenient non-dimensional expression
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Fig. 6. (a)±(f) Variation of the non-dimensional temperature rise distribution �yla=qv� along the direction of motion (X ) and

through the center �y � 0� of an elliptic heat source with uniform, parabolic, and normal distributions of heat intensity, respectively,

with X=ao for Peclet numbers of 1±10 and 0.05±1.
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for the relative velocity of motion of the heat source

considering the thermal properties of the conduction
medium which determines the speed of dissipation of
heat in the medium. Peclet numbers in the range of 0±

10 are generally encountered in most manufacturing
and tribological problems. However, since in this range
the values of T (non-dimensional temperature rise) can

vary signi®cantly, two sets of plots are made here for
clarity, i.e., NPe � 0:05±1, and NPe � 1±10: It can be

seen that the symmetry of the non-dimensional tem-
perature rise distribution increases with decrease in the
Peclet number. Also, the maximum temperature rise is

near the rear edge when the Peclet number is large and

moves towards the center with decrease in the Peclet
number. Also, the maximum temperature rise is closer
to the center of the heat source towards the rear edge

for the normal distribution and moves further away
towards the rear edge for the parabolic, followed by
the uniform distribution. The similarity in the nature

of the curves for a given heat distribution (uniform,
parabolic, and normal) can be clearly seen. It can be

seen from Fig. 6, the location of maximum tempera-
ture rise is di�erent for di�erent Peclet numbers and
di�erent heat intensity distributions. When NPe is very

Fig. 7. (a)±(b) Non-dimensional temperature rise isotherms on the surface for an elliptical heat source with uniform and normal

heat intensity distributions, respectively for Npe � 1: The non-dimensional temperature rise, T � yla=qv:
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large (say NPe � 10), for a uniform distribution, the lo-
cation of the maximum temperature rise is

00:78�X=ao� towards the trailing edge of the moving
heat source. For parabolic distribution, it is
00:3�X=ao� and for the normal distribution it is 00:1,
or, very near the center of the moving heat source.
Fig. 7(a) and (b) show the non-dimensional tempera-

ture rise, T �� yMla=qplv� isotherms on the surface

for an elliptical heat source with uniform and normal
distributions for NPe � 1: It can be seen that the peak
temperature rise for the case of normal distribution is

near the center of the heat source while that for a uni-
form distribution is between the center and the rear
edge of the heat source. Together with Fig. 6, they
show the temperature distributions on the surface

based on the results of the temperature rise calcu-
lations using the general solution of the moving plane
heat sources for a semi-in®nite medium (Eq. (15)).

Such information is extremely valuable for the determi-
nation of the expected ¯ash temperatures and corre-
sponding ¯ash durations.

Rosenthal [2] used moving point and moving line
heat source models in determining the temperature dis-
tribution in welding. Actually the heat source in weld-

ing is a moving plane heat source. To approximate it
to a point or a line source, the temperature rise calcu-
lated for those points near the heat source will always
be higher than actual. The closer the point to the

source, the larger the error. Of course, for the point at
the center of the heat source it would be in®nity.
Rosenthal plotted the temperature distribution con-

tours using his analysis and compared it experimen-
tally. He pointed out that only the points beyond a
distance of 6±8 mm from the heat source gave satisfac-

tory agreement with the experimental results and cau-
tioned regarding the accuracy of values closer to the
heat source. Consequently, such an approximation
leads to a loss of signi®cant information at and near

the heat source. The general solutions for various mov-
ing plane heat sources developed in this investigation
enable calculations of the temperatures very close to

the plane heat source or even at the center of it with
su�ciently high accuracy.

6.2. Surface temperature rise distribution due to
stationary plane heat sources

Fig. 8 shows isotherms of the temperature rise distri-
bution on the surface of a body due to an elliptical

stationary heat source with a normal, parabolic, and uni-
form distribution of heat intensity, respectively. It can
be seen that for the uniform distribution, the change

of temperature rise from the periphery to the center of
the heat source �x=a0 �21 to 0) is not large and var-
ies from 00:7 to 1.17. For the normal distribution, it

varies from 00:5 to 2.97 accompanied by a high tem-
perature peak of 01:8 to 2.97 in the near central

region �x=a0 � ÿ0:3 to +0.3). For the parabolic distri-
bution, the value is somewhere in between. This means
the distribution of temperature rise for a uniform ellip-

tical heat source is comparatively ¯at while that for
the normal elliptical heat source it is rather steep near
the center region. For the parabolic elliptical heat

source it is somewhere in between.

Fig. 8. (a)±(c) Isotherms of the non-dimensional temperature

rise distribution on the surface of a body due to an elliptical

heat source with (a) uniform, (b) parabolic, and (c) normal

distributions of heat intensity, respectively.
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6.3. On the estimation of the time required for
establishing the steady state conditions for stationary

plane heat sources

Fig. 9(a)±(c) show the variation of the non-dimen-
sional temperature rise distribution on the surface

using the general equation for a semi-in®nite medium
(Eq. (16)) for a stationary elliptical heat source of var-
ious heat intensity distributions, namely, uniform, para-

bolic, and normal, respectively. Each ®gure contains a
set of temperature distribution curves for di�erent

heating times �t � 1, 10 and 100 ms, 1 and 10 ms as
well as for the steady state). It can be seen from Fig.
9(a), that when tr10 ms, the temperature rise caused

by the stationary heat sources is very close to the
values for the steady state. From a practical consider-
ation, it is, therefore, not necessary to consider t � 1
for reaching the steady state conditions but a ®nite
value instead. However, this involves the acceptance of
a small error. Depending on the allowable error, the

time required for establishing the steady state may not
be very long. Practically, when the radius of the area
of concern is 01±2:5 times that of the heat source and
the allowable error is about 1%, the time required for

reaching the steady state is usually ®nite and on the
order of 00:1±1 s.

6.4. Temperature distribution under the surface

Temperature distribution under the surface is very
important in many manufacturing applications. For

example, surface integrity including metallurgical
changes at and near the surface, and the residual
stresses are a�ected by the temperature gradients from

the surface into the interior. Hence, it is desirable to
know not only the temperature at the surface but also
the distribution of the temperature under the surface.

Fig. 10(a) and (b) show the variation of the non-
dimensional temperature distribution under the surface
of a body along the X-axis in the X±o±z plane of the

moving coordinate system due to an elliptical moving
heat source of uniform and normal distributions, re-
spectively for di�erent Peclet numbers (1, 5, and 10),
where the origin of the moving coordinate system co-

incides with the center of the heat source. X=ao and
z=ao are non-dimensional distances from the center of
the heat source and the depth, respectively. Fig. 10(a)

and (b) show that the temperature gradient is rather
steep initially followed by a gradual change with
increasing depth. Also, the temperature gradient is

much steeper at higher values of Peclet numbers.
Based on the variation of the temperature rise in the

heat conduction body under the point where the maxi-
mum temperature rise takes place with depth, the fol-

lowing approximate equations for the calculation of
the non-dimensional temperature distribution under
the surface at the point of maximum surface tempera-

ture at di�erent depths are obtained.

y � 0:14578Nÿ1:15Pe eÿ�0:56742�0:6796NPe �z=ao �for an elliptical

uniform heat source�

Fig. 9. (a)±(c) Variation of the non-dimensional temperature

rise on the surface with x i=ao from ÿ3 to +3 due to an ellip-

tical heat source with (a) uniform, (b) parabolic, and (c) nor-

mal distributions of heat intensity, respectively.
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y � 0:36271Nÿ0:98862Pe eÿ�1:8388�0:82371NPe �z=ao

�for an elliptical normal heat source�

Fig. 11(a) and (b) show the variation of the tempera-
ture rise under the maximum surface temperature
point on the surface with depth for an elliptical heat

source with uniform and normal heat distributions, re-
spectively, for values of Peclet numbers in the range of
0.1±10. Here, the logarithmic scale is adopted for the

non-dimensional temperature rise axis as these values

are distributed over a very wide range (from 6� 10ÿ6

to 5). They show that higher the Peclet number, the

steeper the temperature gradient which is an important

factor in determining the residual stresses and subsur-

face damage in such manufacturing processes as grind-

ing. It can also be seen that the gradient of the

temperature drop from the surface to a given depth,

say z=ao � 0:2 or 0.3, for a normal elliptical heat

source is higher than for a uniform elliptical heat

source.

Using the general solution for the stationary plane

Fig. 11. (a)±(b) Variation of the non-dimensional temperature rise distribution �yla=qv� under the maximum temperature point on

the surface with z=ao for an elliptic heat source for various Peclet numbers with uniform and normal distributions, respectively,

using the approximate equations.
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heat sources for a semi-in®nite medium (Eq. (16)), the
temperature rise distributions under the surface caused

by the stationary plane heat source can be calculated.
Fig. 12 shows the distribution of the steady state tem-
perature rise at di�erent depths under the surface of

the body and Fig. 13 shows the steady state distri-

bution of the temperature rise along the z-axis under
the point of maximum surface temperature. It can be

seen from Fig. 13 that for the cases of stationary heat
sources the temperature gradient is low for a uniform
heat source, much higher for a parabolic heat source,

and even higher for the normal heat source.

Fig. 13. (a)±(c) Variation of the maximum non-dimensional

temperature rise under the surface of a body with z=ao from 0

to +2 due to an elliptical heat source of (a) uniform, (b)

parabolic, and (c) normal distributions of heat intensity, re-

spectively.

Fig. 12. (a)±(c) Variation of the non-dimensional temperature

rise at di�erent depths under the surface of a body with x i=ao
from ÿ3 to +3 due to an elliptical heat source of (a) uniform,

(b) parabolic, and (c) normal distributions of heat intensity.
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7. Conclusions

1. The general solutions for the temperature rise at any

point (Eq. (15)) for various moving heat sources

and (Eq. (16)) for various stationary heat sources

caused by various stationary and moving plane heat

sources of di�erent shapes (elliptical, circular, rec-

tangular, and square ) and heat intensity distri-

butions (uniform, parabolic, and normal ) were

developed based on Jaeger's classical heat source

method. These equations can be used for both tran-

sient and steady state conditions. They can also be

used for determining the temperature distribution on

the surface as well as with respect to the depth. Only

one program is su�cient for computation which is

very convenient for addressing a range of manufac-

turing and tribological problems.

2. The general solution for moving plane heat sources

can be used for transient conditions when v2t=4a <
5 and for quasi-steady state conditions when

v2t=4a � 5: This relationship can also be used to

estimate the time required for establishing the quasi-

steady state conditions, namely, tquasi-steady �
5�4a=v2�:

3. Using the general solution for the temperature rise at

any point due to various moving heat sources, the

temperature rise (non-dimensional or dimensional)

isotherms on the surface can be plotted. This infor-

mation is valuable for the determination of the ¯ash

temperatures and the corresponding ¯ash durations

which play an important role in the optimization of

various advanced manufacturing technologies for

improving the quality, productivity, and cost.

4. For moving heat sources, the location of the point

of maximum temperature rise is shown to be di�er-

ent for di�erent Peclet numbers and heat intensity

distributions. When NPe is very large (say

NPe � 10), for a uniform distribution, it is

00:78�X=ao� towards the trailing edge of the mov-

ing heat source. For parabolic distribution, it is

00:3�X=ao� and for the normal distribution it is

about 0.1 or very near the center of the moving heat

source.

5. For moving heat source problems, the magnitude of

the temperature rise as well as its distribution

around the heat source depends on several factors,

including the heat intensity and its distribution, the

shape and size of the heat source, the thermal prop-

erties, and the velocity of sliding (usually the non-

dimensional Peclet number is used to express the

relative sliding velocity considering the thermal

properties and the size of heat source). It was

shown that the symmetry of the non-dimensional

temperature rise distribution increases with decrease

in the Peclet number.

6. Temperature rise distribution under the surface can
also be calculated using the general solution devel-

oped in this investigation. Temperature gradients
from the surface into the interior play a very im-
portant role in many manufacturing applications

and a�ect the surface integrity including metallurgi-
cal changes at and near the surface and the residual
stresses. The results obtained show that the tem-

perature gradient is steep initially followed by a
gradual change with increasing depth. The tempera-
ture gradient is much steeper at higher values of the

Peclet numbers. It is also di�erent for di�erent heat
intensity distributions Ð steeper for normal, less
steeper for parabolic, and even less steeper for uni-
form distribution.

Acknowledgements

This project is sponsored by grants from the

National Science Foundation on ``Tribological Inter-
actions in Polishing of Advanced Ceramics and
Glasses,'' (CMS-94-14610) and ``Design, Construction,

and Optimization of Magnetic Field Assisted Polish-
ing,'' (DMI-94-02895), and DoD's DEPSCoR Program
on ``Finishing of Advanced Ceramics,'' (DAAH 04-96-

1-0323). This project was initiated by an ARPA con-
tract on ``Ceramic Bearing Technology Program,''
(F33615-92-5933) and an NSF U.S.±China cooperative
research project on the Thermal Aspects of Manufac-

turing. Thanks are due to Drs. J. Larsen Basse, B.M.
Kramer, Ming Leu, Delci Durhan, and A. Hogan of
NSF and Dr. K.R. Mecklenburg of WPAFB and Dr.

W. Coblenz of DARPA for their interest in and sup-
port of this work.

References

[1] J.C. Jaeger, Moving sources of heat and the temperature

at sliding contacts, Proc. Roy. Soc. NSW 76 (1942)

203±224.

[2] H.S. Carslaw, J.C. Jaeger, Conduction of Heat in

Solids, 2nd ed., Oxford University Press, Oxford, 1959.

[3] K.J. Trigger, B.T. Chao, An analytical evaluation of

metal-cutting temperatures, Trans. ASME 73 (1951) 55±

68.

[4] B.T. Chao, K.J. Trigger, Cutting temperatures and

metal cutting phenomena, Trans. ASME 73 (1951) 777±

787.

[5] E.G. Loewen, M.C. Shaw, On the analysis of cutting

tool temperatures, Trans. ASME 76 (1954) 217±231.

[6] M.C. Shaw, Metal Cutting Principles, Oxford

University Press, Oxford, 1984.

Z.B. Hou, R. Komanduri / Int. J. Heat Mass Transfer 43 (2000) 1679±1698 1697



[7] F.P. Bowden, P.H. Thomas, Surface temperatures of

sliding solids, Proc. Roy. Soc. A 223 (1953) 29±39.

[8] J.R. Barber, Distribution of heat between sliding sur-

faces, J. Mech. Eng. Sci 9 (1967) 351±354.

[9] A. Cameron, A.N. Gordon, G.T. Symm, Contact tem-

peratures in rolling/sliding surfaces, Proc. Roy. Soc.

(1964) 45±61.

[10] B. Gecim, W.O. Winer, Transient temperatures in the

vicinity of an asperity contact, Trans. ASME, J.

Tribology 107 (1985) 333±342.

[11] D. Kuhlmann-Wildorf, Flash temperatures due to fric-

tion and Joule heat at asperity contacts, Wear 105

(1985) 187±198.

[12] F.F. Ling, A quasi-Iterative method for computing

interface temperature distributions, Zeitschrift fur

Angewandte Mathematik X (1959) 461±474.

[13] F.F. Ling, C.W. Ng, On temperatures at the interfaces

of bodies in sliding contact, in: Proc. of Fourth U.S.

Nat. Congr. of Appl. Mech., ASME, New York, vol. 4,

1962, pp. 1343±1349.

[14] F.F. Ling, Surface Mechanics, Wiley/Interscience, New

York, 1973.

[15] H.A. Francis, Interfacial temperature distribution within

a sliding hertzian contact, ASLE Trans. 14 (1970) 41±

54.

[16] D. Rosenthal, Theoretical study of the heat cycle during

arc welding (in French), in: 2-eme Congres National des

Sciences, Brussels, 1935, pp. 1277±1292.

[17] D. Rosenthal, Mathematical theory of heat distribution

during welding and cutting, Welding Researach

Supplement (1941) 220s±234s.

[18] D. Rosenthal, R. Schmerber, Thermal study of arc

welding Ð experimental veri®cation of theoretical for-

mulas, Welding Research Supplement (1938) 2±8.

[19] D. Rosenthal, The theory of moving sources of heat

and its application to metal treatments, Trans. ASME

80 (1946) 849±866.

[20] H. Blok, Theoretical study of temperature rise at sur-

faces of actual contact under oiliness lubricating con-

ditions, in: Proc. of the General Discussion on

Lubrication and Lubricants, vol. 2, Inst. of Mech.

Engrs., London, 1937, pp. 222±235.

[21] H. Blok, The dissipation of frictional heat, Appl. Sci.

Res., Section A 5 (1955) 151±181.

[22] X. Tian, F.E. Kennedy Jr, Maximum and average ¯ash

temperatures in sliding contact, Trans. ASME, J.

Tribology 116 (1994) 167±174.

[23] J. Bos, H. Moes, Frictional heating of tribological con-

tacts, Trans. ASME, J. Tribology 117 (1995) 171±217.

[24] Z.B. Hou, R. Komanduri, Magnetic ®eld assisted ®nish-

ing of ceramics, Part I: thermal model, Trans. ASME, J.

Tribology 120 (1998) 645±651.

[25] Z.B. Hou, R. Komanduri, General solutions for plane

heat source problems in manufacturing and tribology,

Part I: stationary heat sources, Part II: moving heat

sources, MAE Research Report, Oklahoma State

University, Stillwater, OK, 1998.

[26] M.R. Spiegel, Mathematical Handbook of Formulas

and Tables, Schaum's Outline Series, McGraw-Hill,

New York, 1993.

[27] E.M. Mahla, M.C. Rowland, C.A. Shook, G.E. Doan,

Heat ¯ow in arc welding, Welding Journal 20 (1941)

459.

Z.B. Hou, R. Komanduri / Int. J. Heat Mass Transfer 43 (2000) 1679±16981698


